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Abstract 

This paper deals with mathematical modeling and numerical solution of hyperbolic partial 
differential equations with verification of the inviscid compressible fluid. The solution flow is 
used finite volume method defined on a structured quadrilateral computational mesh. 
Outcome of this work is to create a custom program solver in the calculation of Matlab. As a 
test example was chosen planar channel having a concave bottom portion. Research results 
are compared with the works of other authors published in the literature and commercial 
software. 
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1. The mathematical model of compressible inviscid fluid 

Numerical solution of compressible inviscid fluid is described non-linear conservative system 
of the Euler equations, which are a special case of Navier-Stokes equations. It can be shown 
that the system of Euler equations is hyperbolic. 
 

1.1. Basic equations of fluid dynamics 

Conservative system of the Euler equations representing the mathematical model of 
compressible inviscid and thermally non-conductive fluid, generally based on the laws of 
conservation of mass, conservation of momentum - the two equilibrium equations of forces 
(2D) and the law of conservation of energy.  
This work deals with dvoudimenzionálním compressible inviscid fluid flow, therefore the 
system of Euler equations in matrix notation: 

 
 
Shorthand notation:    
 
1.2. The constitutive relations 

Because of the conservative system has more unknowns than equations, it must be add the 
thermal equation of state showing the relationship between status variables. Compressible gas 
is often thought of as an ideal gas, the following applies: 

 
 



Furthermore, the compressible fluid is characterized by the speed of sound, wherein the 
propagation of sound in an ideal gas can be considered as the adiabatic process, respectively. 
isentropic - changes occur rapidly, so that there is no exchange of heat with the surroundings. 

 
Local flow state is characterized by a Mach number: 

 
The constitutive relation for the pressure, expressed in terms of the conservative variables: 

 

 2. Numerical solutions of the Euler 
equations 

 2.1. Finite Volume Method 
The finite volume method (FVM) was 
established theory at the beginning of 
the seventies, but wider use recorded in 
the eighties. It is used in approximately 
80% of commercial programs. 
 
Computing solutions area is divided into 
a finite number of small non-
overlapping control volumes over the 
grid. For each control volume, then 
apply the system of equations 
separately. FVM uses the integral form 
of equations, the basic equations 
describing the continuum are 
disktetizovány into a system of 
algebraic equations. 
 
The values of the searched velocity 
components and scalar variables are stored in the geometric centers of control volumes, 
values at the border volumes are obtained by interpolation. In our case, flow through the 
control volume boundary in 2D is integral sums over the four faces of the control volume. 
 
Length side of the cell control volume: 

 
 
The normal vector to the side  of the control volume: 

 
 
Unit the outer normal vector: 

 
The contents of quadrangular volume: 

 

Fig. 1 – Control volume with the computational point 
P and nodes 



2.2. MacCormack scheme 
The scheme was originally developed for the method of finite differences. Today can be 
successfully used to solve both the Euler and the Navier-Stokes equations. Although present 
age has been replaced by more efficient and faster switching. For its simplicity and reliability 
are among the classical scheme, among the representatives of the schemes of second order 
accuracy. 
 
The scheme has satisfactory accuracy achieved good results both in the flow subject to strong 
shock waves are at unsteady flow, but the flow is compared with the viscosity of the newer 
schemes slow. The disadvantage of scheme as well as in other schemes of higher order of 
accuracy is dispersive defect, which causes oscillations in the solution, which in the nonlinear 
case, lead to loss of stability. Therefore, it is always necessary to add the scheme member 
with artificial viscosity that dampens ocsilace. 
 
MacCormackovo scheme is a two-step method, second order accuracy. Higher order 
interpolation schemes are generally more accurate but less stable with a longer computing 
time. This is basically the Lax-Wendroffovo scheme written in the form predictor-collector. It 
uses the auxiliary values between time layers, which in turn will use to obtain new values of 
the unknown function at time tn+1 layer. 
 
2.3. Convergence and stability 
Explicit scheme works as gradual process, where the convergence is expressed by means of 
residues selected variable Z. 

 
The stability of difference schemes can be done in several ways, in our case we use spectral 
analysis, the determination of residues is using discrete L2 norms of the time derivative of the 
density of the individual components of speed and power based on the content of each control 
volume. 
The value Δt indicates the time step size, representing a necessary condition, but not sufficient 
to guarantee the stability and convergence of the calculation. Time step sizes also affects the 
size of the grid, speed in the computational domain and the selected value of the constant CFL 
from the interval (0,1). 

 
Where: 

 a  the maximum absolute value of the eigenvalues of the Jacobian matrix 

 
 

and  a  lengths are approximations of the control volume in the direction of i and j 



2.4. MacCormack scheme with artificial viscosity type Jameson 

This chapter outlines the creation of a two-step explicit numerical solution scheme 
MacCormackova finite volume method on structured quadrilateral network, specifically in the 
variant with artificial viscosity Jamesového type.  
 
The scheme is in the form of a predictor - corrector. 

 

 
For capturing the smoothed shock waves and prevent instability in the form of oscillations is 
necessary to add a schema damping member with artificial viscosity. In the case of James 
damping parameters are unknown and depends on the specific solution calculation. 

 
 

Search the numerical solution at the time tn +1 are fixed damping member with artificial 

viscosity:        
 
Where damping members are: 

 

 

 

 

 
  

 

 

 



 
Similarly, to derive the equation for the direction j. 
 
The values of the speed of the walls of the control cells dealt zone can be expressed as the 
arithmetic average of the values of two adjacent cells: 

 

 

 

 

 

 

 

 

2.5. TVD MacCormack scheme in Causon's simplified 

As already mentioned in Chapter 2.2 difference scheme type Lax-Wendroff second order 
accuracy near discontinuities, such as shock waves produce strong oscillations leading to 
numerical instability of the solution. Therefore, at the beginning of the 80th twentieth century 
began to appear TVD schemes designed to solve problems with discontinuities such as shock 
waves. 
The design scheme consists in adding damping members TVD -  and  without 
introducing unknown parameters as in the previous case. 
 
Damping member add to MacCormack scheme after corector step, so that will corrector the 
numerical solution in time tn+1: 

 
 
Where damping members are defined by the following relations: 

 

 
 

For  apply:  

 

 

 

 

The function: Limiter: 

 
 

Courant number:       



2.6. The boundary conditions for the system of Euler equations 

Number of prescribed boundary conditions of inlet and outlet is determined by the number of 
positive and negative eigenvalues in solving the Jacobian matrices of inviscid fluxes vector 
when their number varies with the type of flow. 
 

  The boundary condition inlet 
For subsonic flow type specifying three variables and other variables extrapolated from the 
flow field. Specifically, in our case, the parameters of flow p0, ρ0, and the angle of attack α. 
 

 

 
 
 

 
In the case of supersonic inlet is necessary to prescribe all four variables. In our case it is ρ1, 
M1, u1 and v1. 

 

 
  The boundary condition outlet 

In the case of subsonic outlet fluid exits from the area of computational environment to a 
known pressure pout. The flow field is extrapolated first three components of the vector of 

conservative variables.       
 
The fourth component of the vector W - energy, we calculate by: 

 
 

In the case of supersonic outlet should be all variables to determine the extrapolation of the 
flow field. 
 

  Wall boundary condition 
In our case it is the idealized model inviscid walls, without a boundary layer and velocity 
profile. 
The pressure on the wall of replacing the pressure in the nearest cell adjacent to the wall. 
Condition impermeability of the wall: 

 
 
3. Application of numerical solution 
Pro ověření správnosti, funkčnosti a vhodnosti vytvořeného vlastního programu ve 
výpočtovém prostředí Matlab a pro zvolené numerické řešení použitých schémat byla vybrána 
testovací úlohu rovinný kanál s vydutou částí na spodní straně - Ron-Ho-Ni kanál, resp. 
takzvaný GAMM kanál. 
 



Dimensions of the control volume are x ∈ <0, 3>, y ∈ <0, 1>. For supersonic flow with the 
creation of a system of shock waves were calculated area extended by one part arc x ∈ <0, 4>, 
y ∈ <0, 1>. The middle bottom is found 10% of the profile-arc lying in the area x ∈ <1, 2>, y 
∈ <0, 0,1>. 
 
3.1. Discretization of the computational region 
To verify correctness functionality and suitability program developed in Matlab 
computational environment and selected for the numerical solution of the schemes was 
selected test example planar channel with a concave portion on the bottom – Ron-Ho-Ni 
channel, respectively GAMM channel. 
 
Two-dimensional computational limited area represented by the mentioned channels is 
bounded by four boundaries: 

 Inlet (x=0) - part of the boundary, which flow enters into the computational domain 
 Outlet (x=3, respectively 4) - part of the boundary, which stream is output from 

computational domain 
 The bottom wall (y = 0) - solid impervious wall with a concave arc 
 The upper wall (y = 1) - solid impervious wall 

 
For specific test case numerical simulations were used three types of networks, specifically 
for the case of subsonic flow of 150x50 grid cells, in case of mesh testing transonic flow of 
231x50 cells and finally in the case of a supersonic flow of 321x80 grid cells. 
When calculating the subsonic flow was used uniform quadrilateral grid. 
 

Fig. 2 –  Structured quadrilateral computational grid of 150 x 50 cells for inviscid subsonic flow
 

Fig. 3 –  Structured quadrilateral computational grid of 231 x 50 cells for inviscid transonic flow



When calculating transonic flow was used not uniform quadrilateral mesh, densified in the 
second and third part of the block, which is expected incidence of shock waves. 
When calculating the supersonic flow of the control volume at the end of one extended 
portion of the chord width of arcs. 
 

Fig. 4 – Structured quadrilateral computational grid of 321 x 80 cells for inviscid supersonic flow
 
3.2. The results of numerical solutions for subsonic flow 
In solving subsonic flow we consider subsonic input and output, and prescribe the three input 
variables and one outlet. The remaining values are interpolated from the computational 
domain.  
 
In our case, the subsonic flow of a fluid characterized by the value of the Mach number 
M = 0.5: 

 pO=120196 [Pa] 
 ρO=1,3297 [kg.m-3] 
 α=0 [°] 

 pout=101325 [Pa] 
 CFL=0,7 
 James damping constants α2=0,8 [-], α4= 0,035[-] 

 
On Fig. 6 shows the results - isolines of the Mach number in the investigated area in Fig. 5 
show similar outcomes static pressure. Individual results are in good agreement with those 
reported in the literature [1, 6]. 

Fig. 5 – The distribution of static pressure in the GAMM channel for subsonic inviscid flow [Pa] - 
Jameson

 



Fig. 6 – The distribution of the Mach number in the subsonic GAMM channel for inviscid flow [-] 
- Jameson

 
If inviscid subsonic flow in a symmetrical planar channel must also be symmetric flow. That 
our results to some extent confirmed. In the figure below you can see the progress of the 
Mach number along the channel, as the upper and lower wall. The results are compared with a 
similar calculation in the commercial software Fluent. 
 

Fig. 7 – Mach number distribution on the lower and upper wall of the test channel at subsonic flow
 
As expected, the highest pressure place located on the leading edge of a circular arc and the 
deepest vacuum in the middle. 
 
Stationary solution converges with Jameson type artificial dissipation in the case of subsonic 
flow value for the density residues Rezρ ≈ 10-25 after approximately 700,000 interation. 
 
The value of the residue is stabilized at excellent value - numerical defect and the options 
selected mesh. For future calculations it is possible to set a sufficiently small value in terms of 
convergence and the achievement stop the interation process, to reduce computation time. 
 



Fig. 8 – Convergence for subsonic flow on structured quadrilateral mesh of 150 x 50 cells  
- Jameson 

 
3.3. The results of numerical solutions for transonic flow 
As a second example of numerical solution of compressible inviscid fluid in internal 
aerodynamics using the finite volume method is transonic flow in the same channel with 
identical geometry. This task is already foreseen occurrence of supersonic areas, therefore the 
mesh is smoothed. 
In transonic flow is considered subsonic inlet and outlet, and prescribe the three inlet variables 
to outlet one. The remaining values are interpolated from the computational domain. 

 
In our case we choose subsonic fluid flow characterized by the value of the Mach number 
M = 0.675: 

 pO=137483 [Pa] 
 ρO=1,4637 [kg.m-3] 
 α=0 [°] 

 pout=101325 [Pa] 
 CFL=0,7 
 James damping constants α2=0,75 [-], α4= 0,02[-] 

 
It is assumed that at transonic inviscid flow does not occur in the channel losses, the outlet 
pressure is chosen the same as the input. Losses in the shock wave of low intensity can be 
neglected. 

Fig. 9 – The distribution of static pressure in the GAMM channel for transonic inviscid flow [Pa] 
- Jameson



Mesh in the above profile is softened due to the expected shock wave formation in the second 
half of the arc. This assumption proved to be correct and the other images distribution of static 
pressure and Mach number in the test channel is clearly visible small region of supersonic 
flow finished a shock wave. 

Fig. 10 – The distribution of the Mach number in the transonic GAMM channel for inviscid flow [-] 
- Jameson

 
Transonic flow was next to the numerical solution of the MacCormack scheme with 
Jameson´s artificial viscosity used and modified TVD scheme in MacCormackovo Causon 's 
simplified. Results obtained modified TVD scheme again expressed isolines static pressure 
and Mach number are shown below. 

Fig. 11 – The distribution of static pressure in the GAMM channel for transonic inviscid flow [Pa] 
- TVD (Causon 's simplified) 

Fig. 12 – The distribution of the Mach number in the transonic GAMM channel for inviscid flow [-] 
- TVD (Causon 's simplified) 

It is a well-known test example, when the available literature and numerical analysis is 
provided that the maximum Mach number in the calculation should reach values of 1.37 to 
1.4. The Fig. 13, it can be seen that in the case of calculation using MacCormackova scheme 



with artificial viscosity James's type (red) is on the bottom wall in the second half of the arc 
achieved Mmax ≈ 1.398 [-]. If MacCormackova TVD scheme in Causon 's simplified (blue) is 
reached Mmax ≈ 1.42 [-] and in the case of using a commercial solver Fluent (green) Mmax ≈ 
1.38 [-]. 

Fig. 13 – Mach number distribution on the lower and upper wall of the test channel at transonic flow
Furthermore, it is known that a shock wave should detect next local maximum Mach number, 
known under the designation Zierepova singularity. 
 
The convergence is seen that the stationary solution is achieved by the scheme with artificial 
viscosity type Jameson in the case of transonic flow for the value of the residue density Rezρ 
≈ 10-23 after approximately 180,000 interation. 
 

Fig. 14 – Convergence for transonic flow on structured quadrilateral mesh of 231 x 50 cells 
 
3.4 The results of the numerical solution for supersonic flow 
For supersonic flow we assume inlet and outlet supersonic and prescribes the four input 
variables, the outlet no. The remaining values are interpolated from the computational 
domain.  
 



In our case we choose supersonic fluid flow characterized by: 
 Minl=1,65 
 uinl=572,866 [m.s-1] 
 vinl=0 [m.s-1] 

 ρinl=1,177 [kg.m-3] 
 CFL=0,5 
 James damping constants α2=0,95 [-], α4= 0,02[-] 

 
Results supersonic flow obtained using the schema again with James's damping are shown 
below - isolines of static pressure, Mach number. 

Fig. 15 – The distribution of static pressure in the GAMM channel for supersonic inviscid flow [Pa] 
- Jameson 

 

Fig. 16 – The distribution of the Mach number in the supersonic GAMM channel for inviscid flow [-] 
- Jameson

Individual results are in very good agreement with the results in [1, 6]. The Fig. 17 is clearly 
visible layout Mach numbers the upper and lower wall of the channel. Different results 
compared with those obtained by the commercial software Fluent (green) in the second half of 
the channel is caused by the different order of solutions. The results from Fluent are first order 
- the calculation was stable but less accurate (continuous smooth). 

Fig. 17 – Mach number distribution on the lower and upper wall of the test channel at supersonic flow 



Fig. 18 – Convergence for supersonic flow on struct. quadrilateral mesh of 321 x 80 cell - Jameson 
 
The convergence is seen that the stationary solution is achieved by the scheme with artificial 
viscosity type Jameson in the case of supersonic flow for the value of the residue density 
Rezρ ≈ 10-23 after approximately 60,000 interation. 
 
4. Numerical simulation in Fluent 
For comparison, the jobs were also solved by commercial software - Fluent 6.3  Due to the 
compressible solution was included in the calculation equation of energy. As a model changes 
in air density due to compressibility was set to the ideal gas law. 
The network was chosen identical - a quadrilateral mesh of cells, as in the case of own 
software. 
 
As a numerical calculation scheme was chosen chart type upwind second or first order. 
Schema type for upwind finite volume method can be written in the form [2]: 

 
Value Courantova CFL numbers, indicating the relationship between the time and space step 
was allowed at the default value. The value affects the stability of the solution. 
 
5. Conclusion - Analysis and comparison of results 
The numerical solution of nonlinear hyperbolic system Euler equations were performed using 
one to two variants of a two-step scheme MacCormackova the structured quadrilateral grid. 
Specifically, subsonic and supersonic flow was solved using the MacCormack scheme with 
Jameson artificial viscosity type. In the case of transonic flow control Jameson was next used 
and modified TVD scheme in MacCormackovo Causon 's simplified. All these variants flow 
were compared with those obtained from commercially available solvers for CFD calculations 
- Fluent. 



To assess the quality of the numerical solution can be used as determining the maximum 
value of the Mach number on the bottom wall of the channel, localization and quality 
rendering Zierepovy singularity and overall quality differentiation shock waves. 
 
In the case of subsonic and supersonic flow of the individual results are in good agreement 
with those reported in the literature [1, 6]. It is also achieved good agreement with the results 
of a commercial solver. Only in the case of supersonic flow (Fig. 17), there are differences in 
the second half of the channel solved using commercial software, which was used in the 
calculation of stable first-order accuracy. It is obvious that if we apply the method of second 
order accuracy, the step change, large gradient magnitudes for the shockwave displayed sharp 
enough. 
 
The results obtained during the transonic flow can be gradual process of convergence 
displayed in the Fig. 13 to evaluate the two selected numerical schemes achieve similar levels 
of residues, but modified TVD scheme converges to the stationary solution of 48% faster, is 
approximately twice faster. In contrast, the variant with Jamesovovým damping achieves 
relatively sharp capture Zierepovy singularity, maximum value of the Mach number is within 
the specified limits (Mmax = 1.398). Results obtained by a modified TVD scheme are almost 
identical, but less damped Mmax = 1.42 and is less determined area of the second local 
maximum Mach number. 
 
The performed numerical tests can be seen that using a two-step scheme MacCormackova 
artificial dissipation can be used for all types of flow, and gives very good results with all 
types of flow. MacCormackovo modified TVD scheme in Causon 's simplified gives almost 
identical results and achieved satisfactory results in the test transonic flow. On the other hand, 
a strong disadvantage James damping control are unknown constants α2 and α4, which is 
necessary for every computing task and a mesh of experimentally determined. This 
disadvantage of the modified TVD scheme is omitted. 
 
 
Symbols 
 
a speed of sound [m/s] 
A, B Jacobi matrix [-] 
C constant TVD scheme [-] 
dW damping member in the individual Schemes [kg.m-3, kg.m-1.s-2, 

kg.m-1.s-2, kg.m-2.s-2] 
E total energy per unit volume [J] 
F, G inviscid fluxes vector [kg.m-2.s-1, kg.m-1.s-

2, 
kg.m-1.s-2, kg.s-3] 

l length side of the cell [m] 
M Mach number [-] 
n unit the outer normal vector [-] 
N normal vector having the direction of the outer normal unit 

vector n 
[-] 

p static pressure [Pa] 
p0 stagnation pressure [Pa] 
r specific gas constant [J.kg-1.K-1] 
T temperature [K] 



u, v cartesian components of the velocity vector [m/s] 
V total velocity vector [m/s] 
W vector of conservative variables [kg.m-3, kg.m-1.s-2, 

kg.m-1.s-2, kg.m-2.s-2] 
x, y cartesian components of the vector of spatial coordinates [-] 
 angle of attack  [°] 
2, 4 constant artificial viscosity Jameson type  [-] 
Δt time step of the numerical scheme  [s] 
Δx, Δy steps in the direction of the coordinates x, y  [m] 
   
φ flux limiter in the TVD scheme  [-] 
λi i-th inherent number [-] 
κ Poisson adiabatic constant [-] 
ν Courant number  [-] 
Ωij volume control mesh [m2] 
 density  [km.m-3] 
0 stagnation density [km.m-3] 
 
List of abbreviations 
 

2D two-dimensional 
CFD Computational Fluid Dynamics 
CFL Courant–Friedrichs–Lewy (condition) 
FVM Finite Volume Method 
TVD Total Variation Diminishing 
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