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Abstract 

This paper deals with weak solution of the momentum balance equations. Different shapes of 

velocity profile are taken into account for description of pulsatile flow.  The flow is assumed 

incompressible within the rigid capillary tube with constant diameter. The results of 

approximated solution of flow are compared with exact solution for various Womersley 

numbers. The same analysis was performed for a different type of weight functions and 

weighted residual methods. The assumption of Hagen-Pouseuille velocity profile cause error 

of flow rate in tens of per cent in the range of Womersley numbers 1-12 while the error of 

flow rate computed from fourth order polynomial velocity profile is only a few percents.  The 

analysis proved that the integration of the residual and weight over the cross-section of pipe 

provides results of flow rate closer to the exact solution then the integration over radius. The 

integration over the area set the importance on wall function and back flow rate near the 

wall.  It was revealed that the Galerkin method is the appropriate method for formulation of 

the weak solution of the pulsatile flow then the least square method and expert estimation of 

weighted function. 
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1. Introduction 

The previous work [1] deals with natural oscillation of water column within the rigid tube. 

The error between measured frequency and computed from mathematical model was with 

assumed Hagen-Pouseuille flow approximately 24% and for flow computed from fourth order 

polynomial velocity profile 16%. It seems that the shape of velocity profile has significant 

influence on natural frequency of oscillated water column therefore we decide to study how 

accurately the flow is computed when the approximate solution is adopted.  

The 0D models also known as windkessel or lumped parameter models are often used for 

description flow at arterial tree. The overview of 1D and 0D model that can be found in [2] 

allowed us to identify several approximation of velocity profile (flat, Hagen- Pouseuille, 

power law) that are adopted for description of 0D pulsatile flow. The approximation of 

velocity profile with assumed boundary layer was introduced in [3] previously formulated by 

Bessems [4] in 1D case. The analytical solution of pulsatile flow for harmonic pressure 

gradient in rigid tube was developed first by Womersley [5]. Luchini et al. [6] presented 

formulation based on approximate solution of kinetic balance equation for non-stationary 

flow.  

2. Methods 

2.1  Mathematical model – Weak formulation  



Pulsatile flow of incompressible Newtonian liquid in a rigid pipe with circular and constant 

cross section is described by Eq.(1)  
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where   is the dynamic viscosity. The pressure gradient can be considered as a known 

function P(t) if the 0D formulation is assumed. 
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The velocity profile  ,u r t  can be represented as series of polynomial basis functions  
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The basis functions were selected in order to be symmetric with respect to the longitudinal 

axis of flow and fulfilled the boundary conditions (  
 0,

, 0, 0
u t

u R t
r


 


 ). The first term 1i   

corresponds to the parabolic function (Hagen Poiseuille) the further terms with higher power 

exponent can be called wall functions that allow back flow near the wall.   

The Galerkin weighted residual method is employed to the derivation of approximated 

solution (4). The integration of the residual res  and weight function jw  is over area 2 rdr but it 

is possible to integrate over radius dr .  
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The subscript i is the summation index and index j corresponds j-th weight function. 

 

 Note: The change of weight function 
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And  

11 j
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leads to the least square method and expert estimation of weight function method 

respectively. 

 

It is more convenient to work with flow rates therefore we define total flow rate within the 

tube 
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(7) 

The subscript 1i   corresponds to Poiseuille flow while indices 2i   to n  denote the back flow 

computed from wall function.  
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It is simple to express the dependence the velocity  iU t  as function of flow rate now 
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The equations (4)  can be rewritten in terms of flow rate in matrix form 
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Let us assume only the first term in polynomial series (3) (parabolic velocity profile) 

then wiq is equal to zero. We obtain ordinary differential equation derived from (1) in the form 
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The equation (11) leads in the case of stationary flow to the Hagen-Poiseuille flow. The 

introduction of the approximate solution of the pulsatile flow is used for more complicated 

situation with higher polynomial form of velocity profile. We consider the velocity profile as 

fourth order and sixth order of polynomial function, giving for two base functions (3) 
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(12) 

and for three terms 
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(13) 

 

The reader will notice that the system of equations for different residual method and different 

integration varies in coefficients of ODE’s and has to ask himself which method from class of 

weak formulation is near to the exact solution. The impact of the choice weighted residual 

method and the selection of integration will be discussed in the conclusion. The system (12), 

(13) satisfies Hagen-Poiseuille law when stationary flow is assumed.   

The system (11) ,(12), (13)was solved with matlab ode113 solver (explicit Runge-Kutta 13th 

order) with absolute error set to 1e-8 for pulsatile flow with Womersley 

number 1,2,..,11Wo  and 1e-9 with 12,13,..,20Wo  that is defined by this way 
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and it’s the function of inner radius R   and angular frequency  .  

2.2 Test example 

The exact solution of (1) was computed by finite difference method using Matlab. The 

number of nodes on the radius was set to 1000. The driving force  P t  was defined as 

harmonic function of Womersley numberWo  ranges from 1 to 20. 
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The amplitude of the oscillating pressure was selected so that the threshold of laminar flow 

was not exceeded ( Re 2300  ). 

The stationary flow is assumed at time  0t    
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The constants R ,   ,   were set to correspond to the experiment. 

 

 
 

Fig. 1. The example of exact solution of flow within the rigid tube is marked by black line whereas 

pressure gradient is scaled and labelled with dotted line. The tube has inner diameter 4 mm and it’s 

considered an infinitely long. The water was assumed as oscillating fluid in the capillary. 

 

Situation presented in tested example can be solved analytically because we consider specific 

case of the driving force that has the form of trigonometric function. The situation starts to be 

more complicated in the case of arbitrary pressure variation in time (pumping action of the 

heart or the context of our experiment). The arbitrary pressure must be decomposed in a sum 

of sine and cosine functions known as Fourier series. The process of decomposition has to be 

repeated for any other time pressure variation. From this point of view, it’s more suitable 

utilize the method of finite differences (the Fourier analysis isn’t required). Moreover, the 

presented method of approximated solution simplifies partial differential equation (1) by the 

integral method to the system of ordinary two or three differential equations. 

2.3 Determination of deviation 

The deviation is computed as standard Euclidian norm of two functions of exact flow rate and 

approximated flow rates divided by a time 4T s  . 
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3. Results 

The errors of flow rates are presented on the figures bellow as norm (17) versus Womersley 

number. The total flow rate oscillates in order of 1e-6 m
3
/s as can be seen in figure 1. The 

deviation of (11) and (12) is compared on the figure 2.  



 
Fig. 2. The error of flow rate computed from balance momentum equation approximated by parabolic 

velocity profile and fourth order polynomial velocity profile  

 

The figure 3 represents deviation of different residual method with different integration of 

residual and weight. The velocity profile with polynomial function of fourth order and sixth 

order was tested. The fulfilled diamonds represent the integration over area while the other the 

integration over the radius. 

 
 

Fig. 3. The error of flow rate from solving of ODE’s derived from fourth order and sixth order 

polynomial velocity profile is presented. The Galerkin, least square and expert estimation method with 

integration over area and radius was tested.   



4. Conclusion 

 

4.1 Comparison of parabolic velocity profile with exact solution 

 

The pulsatile flow approximated with parabolic velocity profile gives error in tens of per cent 

in the region of Womersley number Wo =1-12. The solutions converge to the exact solution 

with rising Womersley numbers. 
 

4.2 Comparison of velocity profile of polynomial function 4
th

 and 6
th

 order with exact 

solution 

 

The error of approximate solution from balance of momentum with 4
th

 order approximation of 

velocity profile is in units of per cent while the deviation evaluated from solution of 6
th

 order 

of polynomial velocity profile is units of per mile. The flow rate computed from weak 

solution of balance momentum integrated over area computes the flow rate with smaller error 

then the integration of balance momentum over the radius. The integration over the area of the 

residual and weight puts more emphasis on the wall functions.  

The analysis was performed for methods: Galerkin, least square method and the expert 

estimation of weight function (
1 1w   and

1w r ). It was revealed that the smallest deviation 

from exact solution ensures the Galerkin method. 
 

4.3 Recommendations for experimental device 

 

The simulation was performed in same the region of pressure oscillations that correspond to 

the pressure oscillations of experiment and with the same inner diameter. The experiment 

oscillation coincides to 10Wo  . The reader can see that Hagen Poiseuille flow is inappropriate 

and that the most convenient method from class of weighted residual methods is the Galerkin 

with higher polynomial velocity profile (4
th

, 6
th

) with the integration over area. 
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Symbols 

  Water density  3kgm 
     

  Dynamic viscosity   Pas   

  Angular frequency  1s 
    

p  Pressure    Pa   

x  Axial coordinate   m   

u  Fluid velocity  1ms 
    

r  Radial coordinate   m   

R  Radius of the tube   m   

P  Pressure gradient  1Pam 
    

iU  Velocity amplitude 1ms 
    

iN  Basis function      

jN  j-th weighted function     

i  i-th index 

n  n-th index 

res  Residual 

jw  j-th weight function 

q  Total flow rate  3 1m s 
    

wiq  i-th flow rate near the wall 3 1m s 
    

Wo  Womersley number     

Norm q  Deviation of flow rate 3 1m s 
    

 


